首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   31篇
  国内免费   30篇
测绘学   5篇
大气科学   38篇
地球物理   152篇
地质学   167篇
海洋学   71篇
综合类   8篇
自然地理   116篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   9篇
  2019年   14篇
  2018年   8篇
  2017年   16篇
  2016年   19篇
  2015年   14篇
  2014年   21篇
  2013年   24篇
  2012年   8篇
  2011年   26篇
  2010年   20篇
  2009年   42篇
  2008年   35篇
  2007年   44篇
  2006年   24篇
  2005年   25篇
  2004年   24篇
  2003年   19篇
  2002年   24篇
  2001年   15篇
  2000年   11篇
  1999年   12篇
  1998年   11篇
  1997年   15篇
  1996年   15篇
  1995年   8篇
  1994年   14篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有557条查询结果,搜索用时 15 毫秒
71.
Sand injectites are structures that result from intrusion of fluidized sand into fractures. We have studied them in the Tampen Spur area of the North Sea, and have reproduced them experimentally, by driving compressed air through layers of sand, glass microspheres, and silica powder. The silica powder was cohesive and capable of hydraulic fracturing, whereas the sand and glass microspheres were almost non-cohesive and therefore able to fluidize. The models were dynamically similar to their natural counterparts, for as long as equilibrium was static. When the processes became dynamic, so that inertial forces were significant, the scaling was approximate and the corresponding Reynolds numbers differed. The experimental apparatus was a square box, 1 m × 1 m wide, resting on a grid of fluid diffusers. During the experiments, the fluid pressure increased, until it attained and surpassed the weight of overburden. Flat-lying hydraulic fractures, containing air, formed within cohesive and least permeable layers. Heterogeneities in material properties and layer thicknesses were responsible for localizing fracture networks. When any one network broke through to the surface, rapid flow of air through the fractures fluidized the underlying mobile materials and even depleted some of the layers. Some of the fluidized material extruded at the surface through vents, forming volcanoes and sheets. The remainder lodged at depth, forming sand injectites or laccoliths. Conical sand injectites formed preferentially, where layers had high resistance to bending. Laccoliths formed nearer the surface, where overlying layers had low resistance to bending. The experimental sand injectites were broadly similar to those in the Tampen Spur area of the North Sea, as well as other areas.  相似文献   
72.
Interfacial instability of sand patterns induced by turbulent shear flow   总被引:1,自引:0,他引:1  
When a turbulent shear flow above a plane sand surface entrains sand grains,it generates a variety of sand patterns.Fluvial sand forms two major interfacial patterns:meso-scale dunes and antidunes,and large-scale bars.Measurements have evidenced that under erosive conditions,meso-scale patterns either change to or coexist with large-scale patterns.However,it remains elusive what exactly drives the switching of interfacial patterns and how the switching occurs.Here,we showdcombing a flow model with a grain transport model,allowing for both the surface and suspended sand fluxes dthat the switching of patterns emerges from the shear-driven complex feedback between grain transport and topographic perturbations.The switching predominantly depends on the magnitudes of the Rouse number and the grain size to undisturbed flow depth ratio.The model offers quantitative predictions of the maximum amplification of sand patterns and unveils a new attraction erepulsion phenomenon.  相似文献   
73.
碎石桩复合地基的抗液化特性探讨   总被引:8,自引:2,他引:6  
饱和砂土地震液化问题是岩土地震工程中一个重要的研究课题。在多种可行的防治液化措施中 ,最普遍的方法是采用碎石桩复合地基。本文结合目前国内外碎石桩复合地基的抗液化研究的最新进展 ,对碎石桩的密实、排水减压和减震作用做了较详细的评述 ,最后还提出碎石桩复合地基抗液化特性需要进一步研究的问题  相似文献   
74.
《China Geology》2019,2(2):121-132
Sand production is a crucial problem during the process of extracting natural gas from hydrate reservoirs. To deal with sand-production problems systematically, a sand-production control system (SCS) is first proposed in this paper, specialized for pore-distributed clayey silt hydrate reservoirs. Secondly, a nodal system analysis method (NSAM) is applied to analyze the sand migration process during hydrate exploitation. The SCS is divided into three sub-systems, according to different sand migration mechanisms, and three key scientific problems and advances in SCS research in China Geological Survey are reviewed and analyzed. The maximum formation sanding rate, proper sand-control gravel size, and borehole blockage risk position were provided for clayey hydrate exploitation wells based on the SCS analysis. The SCS sub-systems are closely connected via bilateral coupling, and coordination of the subsystems is the basis of maintaining formation stability and prolonging the gas production cycle. Therefore, contradictory mitigation measures between sand production and operational systems should be considered preferentially. Some novel and efficient hydrate exploitation methods are needed to completely solve the contradictions caused by sand production.© 2019 China Geology Editorial Office.  相似文献   
75.
A series of 1 g model tests was conducted to investigate the accumulated vertical pullout displacement and unloading stiffness of bucket foundations embedded in dry and saturated sands. The foundations were subjected to vertical pullout cyclic loading with different load amplitudes. Cyclic load was applied up to 104 cycles. Test results showed that the accumulated vertical pullout displacement increased with the increase in the number of load cycles and cyclic load amplitudes. The unloading stiffness of the bucket foundations decreased with the increase in load amplitude and number of cycles. Empirical equations were proposed based on the test results to evaluate the accumulated vertical pullout displacement and unloading stiffness of the bucket foundations in saturated sand. These equations can be used for the preliminary design of single or tripod bucket foundations.  相似文献   
76.
水电站坝的砂层地基地震液化可靠度研究   总被引:2,自引:1,他引:1  
对四川地区江河上数座水电站坝基砂层的26组动力三轴试验资料进行了统计分析,基于动剪应力比法的液化判别方法推导了的地震液化的极限状态方程,使用蒙特卡洛随机抽样的方法计算了砂层液化的失效概率,并对某水电站的厂房地基砂层的液化可靠度进行了计算分析。研究表明,统计按粉砂样总体和中细砂样总体划分较为合理;砂层的动剪应力比可采用正态分布;电站砂层地基地震液化的最危险工况为,闸坝盖重加稳定的向上渗流及遭遇Ⅶ度地震荷载,为高液化风险,其液化概率随埋深加大而增大,最危险部位为砂层底板,对坝基砂层应进行抗液化处理。  相似文献   
77.
碎石桩复合地基的研究进展与分析   总被引:7,自引:3,他引:4  
从碎石桩复合地基的抗液化机理、抗液化性能判别方法、动力分析方法等方面入手,对国内外研究现状做了简要介 绍和分析。结果表明,过去的研究主要集中在碎石桩的加密效应和排水效应方面。对水平剪应力分担情况的研究相对较少 碎石桩复合地基抗液化效果判别方法的研究还有待深入。目前,动力分析方法基本上以粘弹性理论为基础,应加强弹塑性及 粘弹塑性有效应力动力分析方面的研究。  相似文献   
78.
The present study combined remote sensing with geographical information system (GIS) technology to interpret Landsat TM images from 1996 to 2000 and establish a land cover database for the Hexi Corridor of China’s Gansu Province. The areas of sand and dust emission and trends in their change were extracted by analyzing the database, with the following results: In 2000, the source area for sand and dust storms totaled nearly 170,000 km2, accounting for 75.1% of the study region. The emission area decreases from as much as 70,000 km2 in winter and spring to around 58,000 km2 in summer and autumn, accounting for 41.1 and 34.1% of the source area, respectively. During the 4 years of the study period, the emission area decreased by nearly 57 km2 in winter and spring (a 0.1% change); however, the vulnerability of the land surface to wind erosion increased in ca. 190 km2 and decreased in ca. 102 km2. Although the area of dust emission decreased from 1996 to 2000, the area vulnerable to wind erosion increased by ca. 87 km2, and the increased number of sand and dust storm days in the region between 2000 and 2003 appears to be correlated with this increase.  相似文献   
79.
In this paper, a modeling procedure is carried out to numerically analyze the end bearing capacity of drilled shafts in sand. The Mohr–Coulomb elastic plastic constitutive law with stress dependent elastic parameters is used for all numerical analyses performed in this study. The numerical results are compared with the available experimental equations. It is seen that numerical results are in good agreement with experimental equations. The variation of the end bearing capacity of drilled shafts versus embedment depth is also studied. Numerical results show that with increase in pile embedment depth, the end bearing capacity increases. However, the rate of increase becomes smaller as the pile embedment depth increases. Also, numerical analyses show that, for equal settlement, the end bearing decreases with increase in the pile diameter. Finally, a sensitivity analysis is performed to obtain the separate effect of each sand parameter on the end bearing capacity of drilled shafts, and the parameters that are most influential are identified.  相似文献   
80.
Oedometer tests have been carried out on 70 undisturbed surficial clays (at approximately 250 mm below the mudline), mostly collected by free-fall corers from sites widely scattered throughout the deep-sea North Atlantic. Acoustic measurements were also made, initially on contiguous samples and ultimately on the same sample using a geophysically instrumented oedometer which also collected electrical resistivity data. Apart from those quiescent areas below the carbonate compensation depth, such as north of the West Indies where very fine clays exist, most of the samples are silty clays whose geotechnical-geophysical properties are dependent on the type of clay minerals present (and their ability to take in moisture), the sand-size fraction, and the quantity of carbonate present. Thus the pure clays have high compressibilities which decrease on the addition of coarse particles, while the converse is true for the acoustic parameters, these increasing with the sand fraction. Using the notion of the intrinsic compression line for all samples, and comparison to it of the measured compression curves, it is clear that, contrary to some previously held ideas, most deep-sea clays are normally consolidated; the addition of carbonate has the effect of creating an open, stronger sediment skeleton. Interestingly, where information is available, the variation with depth of a sample's acoustic velocity follows the void ratio pressure relationship of the compression curve. This allows the construction of an in-situ sediment compression curve using the in-situ geophysical observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号